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Abstract

Dynamically testing software that has been augmented with assertions increases the defect
observability of the test cases (provided that the assertions are reached during testing).
This report presents an approach and tool for assertion localization that is based on finding
regions of the code that appear to be untestable, and then making them more testable. In
our model, assertion localization is accomplished by using dynamic testability analysis. Our
testability analysis is implemented using fault injection, and it suggests where faults can
hide during testing. This report also explores the phenomenon where assertions that were
designed to boost the fault observability provided by test scheme D also boost the fault
observability afforded by a different testing scheme, D'. This phenomenon demonstrates a
unique and cost-effective benefit of assertions not before exploited, and lays forth a new
avenue for finding higher return-on-investment testing techniques.
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1 Executive Project Summary

This document is the Final Report for SBIR contract 50-DKNB-4-00185, titled “Assessing
and Increasing the Testability of Object-Oriented Systems” for the National Institute of
Standards and Technology (NIST). In this Phase II effort, Reliable Software Technologies
(Sterling, VA) has developed the following software utilities: (1) an assertion placement tool
for C++ software programs, (2) an assertion language tool for C++, and (3) an assertion
language tool for Java. Contractually, Reliable Software Technologies was required only
to develop the first and second of these for NIST, but because of the commercialization
expectations from Phase III, Java provides a much stronger business opportunity for Reliable
Software Technologies. Thus we added the Java assertion language capability, and are now
ready to begin the Phase III process.

The C++ utilities allow developers and testers to more easily embed assertions based
on the recommendations that come after performing software sensitivity analysis [8] on a
program’s source-code. Sensitivity analysis is a source-code-based fault injection utility
that recommends where assertions are warranted. These recommendations are based on the
results from running the software with test cases and simulated faults that are instrumented
in the software. If a suite of test cases cannot detect simulated faults, then that suite is less
likely to detect real faults. This isolates those places in the code that are good candidates
for receiving assertions.

Because we have not yet completed the development of our Java sensitivity analysis tool
(which is outside of the scope of this Statement of Work), the Java assertion language tool
only helps a developer instrument code with assertions, and does not recommend where to
place them as the C++ tool does. The Java sensitivity analysis tool is under development,
however, and is anticipated for release in 1998.

Run-time software assertions are merely “little tests” that are themselves code that are
embedded in software to check to see that certain states in an executing program have certain
qualities. The typical goal of using assertions is to show that program states are correct,
and since state correctness is defined by the specification, assertions can test that various
requirements of the specification are correctly implemented.

This two-year effort started in October, 1995, and was completed in late September, 1997.
This report contains an overview of the theory that is used to determine where assertions
are needed and what those assertions need to check for. This report also describes the
architecture of the tools. Details that pertain to using the tools are not captured in this
report, but are provided in the User’s manual that accompanies the tools.



2 Introduction

Software testing is generally performed for one of two reasons: (1) to detect the existence of
defects (faults), and (2) to estimate the reliability of the code. Although there are other uses
for software testing, most applications of it can be grouped into one of these two categories.
Errors are mental mistakes made by programmers, and faults are the manifestation of those
errors in the code.

Testing is considered effective when it uncovers defects. Testing will often be considered
ineffective when no failures occur, because few people today consider defect-free code to
be an achievable goal. Residual software defects not discovered during testing can have
significant and dangerous consequences after the software is released. Since debugging is
usually invoked only after software failure is observed, test schemes that provide a greater
ability to cause software failure if defects are present are very desirable. Using software
assertions in conjuction with testing is one way to make software faults more visible.

Software testability is a characteristic that either suggests how easy software is to test,
how well the tests are able to interact with the code to reveal defects, or some combination of
the two [8]. Describing how easy software will be to test is valuable information for project
schedules and project cost estimation, but this information provides little insight into how
well your test case generator is at creating “defect-detecting” test cases. Because of this
deficiency, it is useful to define software testability as a measure of how well test cases make
defects detectable. This will be the perspective taken throughout this report.

Using this definition of software testability, when software is assessed as having higher
testability, it means that incorrect output will likely occur if a defect exists.! To understand
why faults hide during testing, it is necessary to know the sequence of events that must occur
in order to observe incorrect output:

1. An input must cause a defect to be ezecuted (or what is sometimes referred to as
“reached”).

2. Once the defect is executed, the succeeding data state must become corrupted. This
data state is hence referred to as containing a data state error.

3. After a data state error is created, the data state error must propagate to an output
state, meaning that incorrect output exits the software.

This sequence of events is called the “fault/failure” model, because it relates faults, data
state errors, and failures [8]. Since faults trigger data state errors that in turn trigger software

! Testability scores are in the range [0, 1], with 1 being the highest and 0 being the lowest. This is because
they are probabilities.



failures, any analysis that claims to suggest whether testing is capable of detecting defects
must account for all three conditions?.

This report argues that by using heuristics that identify regions in which faults cannot
be detected (by testing alone, i.e., without assertions), we can identify where additional
validation efforts (which may include more testing or non-testing approaches) should be
performed. We provide a methodology that is complementary to traditional testing and
that reduces the possibility of defect-hiding in those code regions. Our approach can be
thought of as a strategic assertion placement heuristic. Using this technique improves the
likelihood of defect detection and hence improves the software’s reliability.

Over the years, we have observed that although testers would like to use assertions to
improve the quality of their testing process, they find that they do not know the code
well enough to inject correct assertions. For this reason, assertions are primarily used by
developers. However when developers are responsible for creating assertions, this increases
the likelihood that if the code is wrong, the assertions that are derived will be wrong. Further,
neither group really knows where to place assertions that are the most cost-effective. All of
these problems should not be disheartening, because as you will see, a handful of correct and
strategically-placed assertions can dramatically improve the quality of a finished software
product.

Unfortunately, this report does not offer foolproof solutions to these problems, but it
does provide additional reasons for why assertions must be used to improve the deficiencies
of software testing (even if that requires deriving assertions from formal specifications).
Interest in assertions has in fact become so great that several recent languages support
assertion placement, including Anna [5] and Eiffel [7].> This report suggests how developers
and testers can form a partnership that, if successful, can begin to alleviate several of the
aforementioned problems.

3 Run-time Software Assertions

Manually finding defects in a program’s output is difficult if failures occur rarely. Manual
debugging is simply a task that humans are not proficient at. Hence, the use of automated
testing oracles (or what throughout this report we simply term “oracles”) is valuable when
testing software in which failures are rare. The software is of good enough quality such that
failures are rare.

Building automated test oracles requires that the oracle knows what is correct (with
respect to the specification) and what is not. Fortunately, oracles can be designed directly

2Faults and defects may be used interchangeably as they are synonymous terms.
3 Anna (Annotated Ada) uses comments to embed assertions; Eiffel uses object invariants that are inserted
as pre- and post-conditions to all operations on the object.
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from formal specifications (that describe exactly what the software is supposed to do without
also describing the implementation details of the system) [11]. An ezecutable specification
is a formal specification can be executed (like a program) to see if the behavior it defines
satisfies the higher level requirements of the system. Executable specifications typically
produce output, but do not check this output. In theory, the output from an executable
specification can be given to the oracle so that the oracle can learn what output is correct.

Run-time assertion checking is a “programming for better validation” trick that helps
ensure that a program state satisfies certain logical constraints. Unlike executable specifi-
cations, run-time assertions do check for the correctness of the output. Run-time assertions
(or simply “assertions”) are based on either the requirements or the specification. Some
of the earliest writing concerning assertions can be traced to [6, 9], and more recent re-
search into giving programs the ability to check themselves during execution can be found
in [12, 13, 2, 15]. Further, Bieman and Yin recently discussed using assertions to increase
fault detectability [1]; however our contribution furthers the idea of run-time assertions by
providing methods for placing assertions where assertions are more desperately needed. Our
method decides what portion of the software’s state really needs to be checked, and where
that check needs to be placed. We term our assertion placement scheme strategic run-time
assertion checking.

Our goal is to embed assertions in a manner that engenders testing with greater defect
revealing ability. The conjecture that has motivated this work follows:

Why place assertions on program states if it is known a priori that if these states
are in error, failure of the software is nearly guaranteed to occur. Instead, place
assertions on program states when it is likely that incorrectness in those portions
of the state will not be observable in the software’s output.

Our strategic run-time assertion checking presents the opportunity to thwart defect hiding
at a more reasonable cost than ad hoc assertion placement, which is the usual heuristic for
deciding where to put assertions.

Software assertions can be very complicated in terms of the information that they pro-
duce, but for simplicity, we will assume that software assertions are Boolean functions that
only evaluate to TRUE when a program state satisfies some semantic condition, and FALSE
otherwise. If an assertion evaluates to FALSE, we will consider it the same as if the exe-
cution of the program resulted in failure, even if the output for that execution is correct.
Because a program that did not have assertions is truly a different program after assertions
are added, it is necessary for us to redefine what we consider a program failure: a program
failure will be said to have occurred if the program output is incorrect or if an assertion
evaluates to FALSE. This not only modifies what is considered failure, but it also modifies
what is considered output, because there is now one more bit of output each time that an
assertion statement fails.
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write (y);

100 200

Output Space

Figure 1: One-dimensional output.

Whenever the amount of output increases (e.g., outputting 2 64-bit floating point values
as opposed to one), more of the internal (intermediate) calculations can be observed. Obseru-
ability has long been a metric used in hardware design that describes the degree (or ability)
of a chip to detect problems in the inner logic of a chip at the output of the chip. When
observability is poor, hardware probes are often placed in circuits to increase the observ-
ability of the circuit during testing. Similarly, assertions increase software’s observability
by increasing the dimensionality and/or cardinality of the software’s output space, which
is precisely what is desired if the of testing is to catch defects. (This is discussed in more
detail later.) In our work, we consider software observability to be an informal measure of
the tester’s ability to ascertain what is occurring internally inside of the states created at
run-time.

Correctness proofs can be thought of as a formal assertion checking system. Correctness
proofs statically test to ensure that the entire program satisfies certain logical constraints
for all inputs, whereas an executable specification, like a program, can be run on a per test
case basis. Software assertions perform a slightly different function than correctness proofs;
they semantically test internal program states that are created at run-time and that may not
be observable as stand-alone entities. For example, given a known range of legal values for
some intermediate computation in a program, a software assertion can test the correctness
of the program state at the instant when the state is created. Since assertions are able to
check intermediate data state values, they can reveal when the program has entered into an
undesirable state. This is vital, because the undesirable state might not propagate into a
program failure.
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ASSERT (a);
write (y );
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write (y );
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Figure 2: Two-dimensional output from added Assertion

An important measure of the fault-hiding ability of a program is contained in the dimen-
sionality and cardinality of the program. Dimensionality is the number of different output
variables produced by the program, and cardinality is the total number of unique output
values. So for example, if a program has 100 different variables, and only one variable’s
value is output, then the dimensionality is one. If 20 variables have their values output,
the dimensionality would be 20. If there are 1,000,000 million unique input values to the
program, then the cardinality of the program is less than or equal to 1,000,000.

The effect of assertions on the dimensionality and cardinality of a program can be best
explained through examples. Figure 1 illustrates a program that reads in an integer and
outputs an integer; in this example, an input value of 5 produces 100, 6 produces 200, and
7 produces 300. Thus, the dimensionality of the output space in Figure 1 is one.

In Figure 2, the conditional branch in the code causes only certain inputs to execute
the assertion. The assertion essentially acts as another output statement whose result will
be checked by the oracle. Thus, for some inputs, the dimensionality of the output actually
increases to two. In Figure 2, the inputs 5 and 6 execute the assertion and will therefore have
outputs with a dimensionality of two, whereas an input value of 7 will have a dimensionality
of one.

Now imagine a slightly different example where two unique input cases resulted in the
same output value, and assume this value is of dimension n. By adding an assertion to
the code that both input cases execute, it is possible that the variable asserted on now has
different values, and hence each input case can be thought of as producing a unique output
value of dimension n+ 1. This is shown in Figure 3. In this example, we see how an assertion
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if (x==5) | x==6)){
ASSERT(Xx==5);
write("xis5or 6");

. -
(TRUE, x is5 or 6) (FALSE, xis5or 6)

Output Space

Figure 3: Assertions increase the cardinality of the output space.

can increase the cardinality of the output space.

Assertions have an interesting ability that is similar to the ability of oracles. When an
assertion evaluates to FALSE, it has the ability to not only warn of a problem at this point in
the code, but also to warn of problems at totally different places in the code. This requires
reversing the execution trace back to the preceding computations in order to localize the
problem. It is this ability to warn of problems originating from various statements that
increases the fault detectability provided by assertions.

3.1 Strategic Assertion Placement

We advocate a middle ground between no software assertions at all (a common practice that
fortunately is becoming less common) and the maximum of assertions on every statement in
a program. Our compromise is to place assertions only at locations where traditional testing
is unlikely to uncover software defects. Once testing is completed, the embedded assertions
may be removed or deactivated.*

Assertions can be extremely powerful testing aides; however they are expensive to derive,
instrument (insert), and execute. Thus if we can find ways to better isolate where they are
needed, we can not only improve the likelihood of fault detection at those places, but we can
also avoid the cost of using assertions at those places where they are less helpful.

To date, assertion localization has been, at best, performed in an adhoc manner. The

4The removal of assertions is motivated by the desire for more efficient execution during production runs.



process has traditionally been developers sprinkling code with assertions in places that in-
terested them. Our model is that assertions need to be placed where the test cases that will
be used on the code are helpless in detecting faults. In our opinion, this makes assertion
placement more systematic, and enhances the ability of software testing to detect faults.

Predicting where faults may hide is an expensive process because there are so many
considerations that must be factored in. We employ sensitivity analysis to gather this in-
formation. Sensitivity analysis is a dynamic approach for predicting where faults will hide
from test cases [8]. Sensitivity analysis predicts the likelihood that a test scheme will:

1. exercise the code (i.e., enforce reachability),
2. cause internal states to become corrupted when defects are exercised, and
3. propagate data state errors to the output space.

These three conditions must occur in order for defects to be observed. To assess reachability,
sensitivity analysis tracks how frequently statements in a program are exercised. To assess
(2) and (3), sensitivity analysis employs a variety of different fault-injection techniques that
both mutate the software and mutate the internal program states that are created during
execution.

3.2 Generalized Observations Concerning Assertions

To close out the theoretical part of this report, we wish to put forth several observations
that we have discovered regarding the relationships between assertions, test cases, and a
program’s ability to hide faults. Interest in using assertions continues to grow, but many
practitioners are not sure how to begin using assertions or how to convince their management
that assertions should become a standard part of their testing process. Hopefully, some of
these observations will provide the insights as to what assertions and reachability analysis
can do towards making validation efforts more fruitful.

3.2.1 Reachability

Static metrics cannot as easily nor accurately address software reachability as can dynamic
metrics. Although collecting data about information loss is useful for assertion placement,
reachability analysis is still necessary to determine whether the assertion will be exercised.

Let T'(P)p represent the fault detectability of program P when tested with test suite
D. And let (D U A) represent test suite D after it has been augmented with enough test



cases such that all statements in P are exercised.® Note that A could be empty, in which
case D = (D U A). Since reachability is the first event in the fault/failure model, it is a
necessary condition for faults to be detected, hence

T(P)p <T(P)p u a)-

(This is similar to Weyuker’s Monotonicity Axiom [14].)

3.2.2 Changing Test Suites

Are faults more or less likely to be hiding after assertions are added and the manner by
which test cases are generated changes? We begin to answer this question by looking at the
situation where the code has no assertions, and then we will consider the situation where
assertions are embedded.

For program P without assertions, we showed that regardless of what A added to test
suite D, we know that T'(P)p < T'(P)(p u a)- Given a new test suite D’ that is not identical
to D and neither test suite is a subset of the other, what can we say about the relation
between T'(P)p and T(P)p? Quite simply, we cannot say anything confidently without
running a technique similar to sensitivity analysis with both D and D'. That is, we do not
know whether T'(P)p < T(P)p or T(P)p > T(P)pr.

Now let P4, represent program P with assertions which were designed to boost the fault
revealing ability of D. Assertions increase the likelihood that the third condition of the
fault/failure model happens. Then,

T(P)p <T(Pap)p-

From there, this is also true:
T(P)p <T(Pap)pr, (1)

regardless if D and D’ have common members. Our argument in support of this conjecture
follows: if the assertions placed into P (that are based on D) are never exercised via inputs
from D', then T(P)p = T(Pa,)p; if as little as one assertion is exercised by some input in
D', then it is possible that T'(P)p < T(Pa,)p will be true.

What this suggests for assertions is straightforward. Since assertions directly affect prop-
agation, if propagation is homogeneous for some 7 € D, it is likely to be homogeneous for
some other j € D.® Whether j isin D or D' is immaterial. In general then, assertions appear

SThere are software test case generation tools (Godzilla [10], WhiteBox (TM) TGen) that are intelligent
enough to sometimes find test cases that will exercise previously unreached statements in the code, but this
is an unsolvable problem in general.

6Homogeneous propagation is said to occur for some input 4 if any type of corruption of the state created
at location ! by input ¢ results in corrupted output.
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to have an impact on fault detectability that is without respect for whether the inputs to the
software are from one test suite or another. Hence since assertions improve the propagation
prospects for inputs from D by increasing the cardinality or dimensionality of the output
space, they should also improve the propagation prospects for D’.

And finally, we suspect that it will generally be true that:

T(P)p <T(Pap) u a) (2)

However there will be cases where
T(P)p =T(Pay) i u a)

specifically when D = (D U A) and/or the assertions placed into P are not exercised.

3.2.3 Testers vs. Developers

Assertions can be derived as soon as a specification exists, however in this code-based
methodology, assertion localization does not occur until after code testability is measured.
Thus since testability measurements must be performed before the assertions are derived,
this process cannot be performed until later in the software development life-cycle.

However, knowing that, for example, variable a needs to be tested after assignment state-
ment 100, does not indicate what constraint the assertion should be testing for (to determine
whether a problem with a has occurred). Hence our methodology has only addressed one part
of the oracle/assertion problem, specifically placement, not derivation. Someday we would
like to link this tool up with a formal specification language, and automatically generate the
assertions, but that remains a research goal for the future.

As mentioned earlier, testers are likely to be incapable of deriving correct assertions,
while developers are more likely to derive assertions that mimic the semantics of the code
already there. If the developer does not understand the specification, their assertions will
be incorrect. That is to say that if a developer’s code is faulty, their assertions will almost
certainly be faulty.

This brings us to our final recommendation for how to team developers and testers
in a partnership to strategically derive and embed assertions. Let the testers find where
assertions are needed, and leave it to the developers to determine what the assertions should
be. Note that this is different than the case where the developer determines both where to
place the assertions and what they should be. Here, the developer is being forced to derive
assertions that the tester needs for places in the code where the developer might not be as
sure as to what the assertion should be. If this happens, it forces developers to dig deeper
into the code and requirements than they might have already done. This plays a similar
role as code inspections, except that the person digging into the code is also the person

11



that is likely to have written the code. Although this is not a foolproof solution, it is the
best recommendation that we can provide at this time. Having developers spend more time
comparing their previous understanding of the code to the existing requirements can only
serve to improve the code’s quality. Even if the assertion that the developer derives does not
detect an error, the fact the the developer is forced to derive the assertion will increase the
likelihood that the developers themselves find errors, because they are forced to get more
familiar with less familiar internal computations in the code.

12



4 QOwur Phase II Prototype Tools

The tool that we are delivering to NIST is named ASSERT++. ASSERT++ has two sub-
utilities:

1. A utility that supports the assertion language that we have created. This works for
both Java and C++.

2. A utility that we call CBrowse, which recommends where assertions should be placed
based on the testability scores.

These tools are quite simple to use, and are well suited for the tester/developer team that
we have advocated.

The first tool currently works for Solaris but could easily be ported to other UNIX
platforms like SunOS, HPUX, and Linux. Also, this tool could be ported to Windows-NT or
Windows95 quite easily. The CBrowse tool that does the testability-based placement only
works on the UNIX (currently Solaris) platforms.

The first utility allows a developer to include complex assertion statements directly in
the source code of a program that he or she is working with. The assertion statements have
the appearance of C++ / Java statements, and are included in the source code just like any
other programming statement. These statements are transformed into valid C++ / Java
statements by this utility, and can then be evaluated at run-time. This utility is composed
of three parts: (1) the shell, (2) the instrumentor, and (3) the compiler. These components
work together to allow the user to place complex assertions in his or her code, and to have
these assertions evaluated at run time.

The second utility, CBrowse, is the tool that allows the user to see his or her code with
the testability scores, thus suggesting where assertions are needed. For this tool to work
properly, it must have access to the source code as well as to the testability scores after
sensitivity analysis is performed.

Figure 4 shows how this Phase Il innovation fits in the software Validation and Verification
process. Here, we see that the original source-code first receives software testability analysis.
From that, the tester looks at the results and makes recommendations to the developer as to
where assertions should be placed. The developer then derives the appropriate predicates,
and the assertion instrumentor then adds the assertions to the source code, thus creating
the annotated source-code version. Now, this new version of the code is ready for testing.

4.1 Components

RST’s shell program is used to parse command line input. It begins by determining what
kind of program it is dealing with (C++ / Java). It then breaks the compilation process

13
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Figure 4: The Testability-guided Assertion Placement Process.

into a number of steps depending on the program type. For a C++ program, the shell
determines what compiler options belong to the pre-processor, what belong to the compiler,
and what belong to the linker. In the case of a Java program, the shell does not have to do
any pre-processing.

The shell program then begins to execute the steps that it has determined to be necessary.
For a C++ program, this means that it must first pre-process the source code. A Java
program will skip this step, and move immediately to the next step, instrumentation. After
invoking the correct instrumentation program (C++ / Java), the shell program will perform
any necessary compilation and linking.

RST’s assertion instrumentation program is responsible for parsing the source code of a
program and generating instrumented source code. It translates assertion language state-
ments into valid C++ / Java statements, which are then written into the instrumented source
code. The original source code (complete with assertion statements) is never changed, and
it is the instrumented source code that the assertion tool will compile.

The C++ version of RST’s assertion tool can be configured to work with almost any
command-line C++ compiler that can compile ANSI C++ statements. This means that a

14



developer will most likely not have to change compilers in order to use this tool. The Java
version of RST’s assertion tool makes use of any command-line Java compiler. As with the
C++ version of the tool, this means that in most cases the developer will not need to change
compilers in order to use RST’s assertion tool.

4.2 Styles of Assertions

RST’s C++ assertion tool supports two styles of assertion statements. These styles are
Definition Placed assertion statements and Specification Placed assertion statements. A
Definition Placed assertion statement is located in the actual method/function definition. A
Specification Placed assertion statement is located in the class specification section of a C++
program. RST’s Java assertion tool supports only Definition Placed assertion statements
since there is no class specification section of a Java program. Both the C++ assertion tool
and the Java assertion tool use the same format for their assertion statements. This format
is:

<assertion type> (<condition>, <message>) ;

The < assertiontype > can be either ASSERT, PRE_CONDITION, POST_CONDITION,
or INVARIANT. The < condition > is a valid boolean statement written using the assertion
language that is part of RST’s assertion tool (that is described in the User’s Manual that
accompanies the ASSERT++ tool). The < message > is a text string that will be displayed
when the < condition > evaluates to FALSE (referred to from here on as an assertion firing).

4.3 Types of Assertions
4.3.1 The ASSERT statement

An ASSERT statement is used to check the value of a single variable at a particular location
in the program. It may be placed at any point that a C++ / Java statement could be placed.
In the following example, an ASSERT statement is used to insure that the variable x does
not have a negative value after the assignment statement.

X=7;
ASSERT( x >= 0, "x has a negative value") ;
cout << "Value of x is " << x << endl ;

ASSERT statements are useful to verify that values computed within methods/functions
are within acceptable bounds. An ASSERT statement may only be used as a Definition
Placed assertion.
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4.3.2 The PRE_ CONDITION and POST_CONDITION Statements

The PRE_CONDITION and POST_CONDITION assertion statements are modeled after
the ASSERT statement provided in the C language. They are used to check the value of
variables at the point of method/function entry and exit respectively. A PRE_.CONDITION
is evaluated as the first statement of a method/function. A POST_CONDITION is evalu-
ated as the last statement of a function/method before the return statement (or end of the
function, if no return statement is provided). If multiple return statements exist, then the
POST_CONDITION will be evaluated before whichever return statement is reached.

Both PRE_CONDITION and POST_CONDITION statements may be used as either
Definition Placed assertions or Specification Placed assertions. When used as a Definition
Placed assertion, a PRE_CONDITION or POST_CONDITION should be placed immedi-
ately after the opening “curly brace” of a function/method. POST_CONDITIONs will be
evaluated at the proper place in the function/method despite their location at the top of the
function / method definition. An example of a Definition Placed PRE_CONDITION and
POST_CONDITION is:

void
Screen: :LightPixel(int x, int y)

{
PRE_CONDITION ((x >= 0) && (y >= 0)), "Negative screen coordinate given") ;
POST_CONDITION( screen[x] [yl == true, "Failed to light pixel") ;

screen[x] [y] = true ;
return ;

The above example is equivalent to writing the following:
void
Screen::LightPixel(int x, int y)

{
ASSERT((x >= 0) && (y >= 0)), "Negative screen coordinate given") ;

screen[x] [yl = true ;

ASSERT( screen[x] [yl == true, "Failed to light pixel") ;
return ;
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The same PRE_CONDITION and POST_CONDITION statements could be written as
Specification Placed assertion statements (for C++ only), and they would be evaluated
identically. Specification Placed assertion statements are written as:

class Screen

{
private:
bool screen[10][10] ;
public:
LightPixel(int x, int y) ;
PRE_CONDITION((x >= 0) && (y >= 0)), "Negative screen coordinate given") ;
POST_CONDITION( screen[x][y] = true, "Failed to light pixel") ;
ClearPixel(int x, int y) ;
}

4.3.3 The INVARIANT Statement

An INVARIANT statement is a combination of the PRE_CONDITION and POST_CONDITION
statements. It is used to check that a condition holds at both the beginning and end of ev-
ery public method in a class. It is equivalent to writing both a PRE_CONDITION and
POST_CONDITION for each public method. In a constructor or destructor, it acts as only

a POST_CONDITION or PRE_CONDITION respectively. An INVARIANT statement must

be placed in the specification of a class, and this feature is only available in the C++ capa-
bility of ASSERT++. The statement is placed immediately after the opening “curly brace”

at the beginning of a class specification. An example of an INVARIANT statement is:

class Screen
{
INVARIANT( (cursorX > 0) && (cursorY > 0), "Negative coordinate given") ;
private:
bool screen[10][10] ;
int cursorX ;
int cursorY ;

public:
LightCursor(void) ; // Lights up the current cursor position

This is equivalent to writing:
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class Screen

{
private:
bool screen[10][10] ;
int cursorX ;
int cursorY ;
public:
LightCursor(void) ; // Lights up the current cursor position
PRE_CONDITION( (cursorX > 0) && (cursorY > 0),
"Negative coordinate given")
POST_CONDITION( (cursorX > 0) && (cursorY > 0),
"Negative coordinate given") ;
}

4.4 The Firing of Assertions

When the condition of an assertion statement evaluates to false, the assertion is fired. When
an assertion is fired, the user is supplied with some useful debugging information. This
information can be used to determine exactly which assertion statement fired, and can aid
in determining why that statement fired. Each of the assertion types listed above produce a
similar output when they are fired. In C++ this output looks like:

<process ID>: <assertion type> <condition> failed at <file name>:<line number>

The < processID > is the unix process 1D of the executable program that contained
the assertion that fired. The < assertiontype > tells whether the assertion that fired was
a pre-condition, post-condition, assertion, or invariant. The < condition > is the condition
that failed, causing the assertion to fire. The < filename > is the name of the file that
contains the source code of the location where the assertion fired, and the < linenumber >
is the line in this file where the assertion was fired.

The < filename > and < linenumber > outputs of Specification Placed assertions
are adjusted to reflect the location in the source code that they were evaluated at. This
means that a PRE_CONDITION statement that is Specification Placed will show the file
name and line number that identifies the opening “curly brace” of that method’s definition.
This feature is even more useful when dealing with POST_CONDITION and INVARIANT
statements. When a POST_CONDITION fires in a method that has multiple exit points,
the file name and line number can be used to determine which exit point was being executed
when the assertion fired. Similarly, the firing of an INVARIANT can be traced to discover
exactly where execution was when it failed.
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The following is an example of a POST_CONDITION firing during the running of an
executable. The file “cls.cxx” is a library file that is being used by the compiled program
“test_double”.

cls.cxx:

37: /* DoubleInt(int x)

38: x This function takes an integer as its parameter, and returns an
39: % integer that is twice as large as the integer that it was given.
40: =x/

41: int

42: DoubleInt (int x)

43: {

44 . POST_CONDITION ($RETURN == ($0LD(x) * 2), "Failed to double the variable");
45:

46: x *= 3 ; // This is where the error occurs!
47 return x ;
48: }

When the program is run...

rst_computer> test_double

process 11350: post-condition ( $RETURN == ( $0LD ( x ) * 2 ) )
failed at cls.cxx:47

[Failed to double the variable]

Notice that the file name indicated (“cls.cxx”) is the the name of the library file that
contains the Doublelnt function, not the name of the program that was executed. Also notice
that the line number that is displayed is the line number of the return statement (47), not
the line number of the post-condition. This information makes it simple to track down the
bug in this program.

In Java, the message that is displayed is slightly different due to the different capabilities
of the language. In Java, no process id is displayed. Java does give the added information
of an entire stack trace where the line number and file name are displayed in C++. An
example of an assertion firing in Java would look something like:
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rst_computer> java prime

PostCondition ($ForAll ( int , x , 0 , 6 ,q [ x] >-1) ) failed:
at prime.arr_test(prime.java:77)
at prime.main(prime.java:116)

[negative int existed]

4.5 Assertion Behaviors

There are a number of actions that can be taken when an assertion fires. These actions,
called behaviors, can be determined by the user. Both the C++ and the Java tool support
behaviors that allow the user to specify whether to continue, terminate, or ignore when an
assertion fires. The C++ tool adds the capability to have the program pause in its execution.
The Java tool gives the user the option of having the output from the terminate or continue
behavior go to either stdout or to a special pop-up window that the user must close.

The most common behavior that will be used is the terminate behavior. This behavior
causes a program to cease execution after an assertion statement has fired and printed its
output. Since the firing of an assertion indicates a bug in the code, it is usually desirable to
stop execution at this point instead of continuing onward.

The continue option causes the program to continue execution even after an assertion
statement has fired. It prints the output that it normally would, and then continues with
the program (possibly causing more assertion statements to fire later). This behavior might
be useful for things such as tracing the propagation of an error through a program or for
collecting the output of a program in a file (possibly for testing purposes).

The ignore behavior causes an evaluated assertion to produce no output. This is different
from removing the assertions from the source code (talked about later) because the assertion
statement is still evaluated.

The pause behavior (C++ only) results in output being printed as usual, and the program
being put into a paused state. This is a useful debugging tool because, by using the process
ID that is given, the user can load the paused program into a debugger. Since the program
has not yet terminated, the programmer has access to the complete state of the program
at the time that the assertion was fired, and the programmer can use this information to
determine what caused the firing of the assertion. Each of these behaviors can be configured
at either compile time or run time. This enables the user to compile a program once, and
run it using various behavior settings. In addition to these behavior settings, there are other
options that affect assertion statements. Each of the assertion types may be turned on or off
independently. The user may also choose to turn off at compile time. When the assertions
are turned off, they are not compiled as part of the source code. This is most useful when a
program has been thoroughly tested, and is being made ready for release.
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4.6 The Assertion Language

The assertion language that RST developed is used to specify the condition that an assertion
statement is verifying. It functions as an extension of the syntax that C++ and Java
provide. The assertion language provides a means to simplify the creation of complex boolean
expressions. An assertion is fired when one of these boolean expressions evaluates to false.
RST’s assertion language extends the power of boolean expressions and make them more
readable. The following language constructs are provided (and can be joined with any
standard C+4 / Java expression):

$NOT, SAND, $OR These are just textual equivalents of “!”, “&&”, and “||” respectively.
They help to increase code readability.

$Always Evaluates to false; used to cause an assertion to fire unconditionally. Analogous
to ( false ).

$Zero(< variable >) Evaluates to false if < wvariable > is not zero. Analogous to (<
variable >==0).

$Equal(< varl >, < var2 >) Evaluates to false if < varl > does not equal < var2 >.
Analogous to (< varl >==<var2 >).

$Range(< variable >, < lower >, < upper >) Evaluates to false if < wvariable > is not
between < lower > and < upper >. Analogous to ((< wvariable > >= lower) &&
(< variable >< upper))

$StringCompare(< stringl >, < string2 >) The string parameters must both be type
char *. Evaluates to false if the strings are not identical.

$ForAll(< type >, < iterator >, < initialization >, < stop >, < condition >) The $ForAll
statement is can be used to ensure that every element of an array or STL container
meets some condition. It is based on the mathematical concept of universal quantifi-
cation. The user must supply the iterator and its type. He must also provide the
initialization value for the iterator, and the stopping criteria. The < condition > is
checked at each iteration of the loop. The < condition > may be a simple expression,
or it may be a complex expression built using any of the elements of the assertion
language. This includes the ability to nest $ForAll statements within other $ForAll or
$ThereExists (see below) statements. The following is an example of using a $ForAll
statement in an assertion statement.

int grades[10] ;
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ReadGrades (grades) ;
ASSERT($ForAll (int, i, 0, 10, grades[i] >= 0),
"No negative grades allowed") ;

This assertion statement will fire if any of the integers stored in the array grades
(between 0 and 9 inclusive) are negative.

$ThereExists(< type >, < iterator >, < initialization >, < stop >, < condition >) The $There-

Exists statement follows the same format as the $ForAll statement. It is based on the
mathematical concept of existential quantification. It will fire only if the condition
fails for every iteration of the loop. Like the $ForAll statement, it too may be nested
or combined with any element of the assertion language. The expression:

ThereExists(int, i, 0, 10, grades[i] >= 65)

will evaluate to false only if none of the integers stored in grades (between 0 and 9
inclusive) are greater than 65.

$RETURN and $OLD(< wvariable >) These two keywords are available for use only in
a POST_CONDITIOIN statement. The SRETURN keyword refers to the value being
returned by the function at whatever return statement has been reached.
The $OLD(< wvariable >) keyword is used to reference the value of the variable <
variable > at the entrance to the method / function.
The $OLD and $SRETURN keywords can be combined and used as follows:

int
DoubleInt (int x)
{

POST_CONDITION($RETURN == $0LD(x) * 2), "Failed to double the variable")

X *= 2 ;

return x ;

In this example, the POST_CONDITION is ensuring that the value that is returned
by Doublelnt() is twice that of what was passed in.
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5 Using Testability to Guide Assertion Placement

The novelty of this entire SBIR project was the idea of using testability scores (which are
derived from a fault injection technique called sensitivity analysis) to suggest where assertions
can find faults that a test suite cannot. Testability scores are composed of three factors:
execution estimates, infection estimates, and propagation estimates.

After much research, and given our results from Phase I [4], the propagation estimates
were determined to be the most crucial information for assertion placement. When you con-
sider that this effort is focused on enhancing the testing process of object-oriented software,
this makes intuitive sense. After all, tiny objects are very easily tested in isolation. It is
not until they are combined with other tiny objects that we realize that if faults hide, they
will hide by virtue of the fact that the corrupted states do not propagate properly. Hence
propagation scores provide the most useful information to guide assertion placement.

Propagation scores measure the likelihood that an erroneous data value will result in
erroneous program output. The higher the propagation score, the more likely it is that bad
output will be produced, and hence it is more likely that regular testing will succeed in
finding those types of faults. It is not until low testability scores are observed that concern
should occur, since the lower scores indicate that testing is unlikely to find faults at those
places. To compute the propagation score for a given program, variables are perturbed and
the programs output is checked to see if the output of the perturbed program differs from
the output of the unperturbed program.

Testers and developers can usually detect when a program produces corrupted output (if
they cannot, the usefulness of testing is seriously brought into question). When programs
do “wear their faults on their sleeves” in this manner, the need for additional assertions is
reduced. The need for assertions occurs when programs do not have this property, and low
propagation scores are observed. Low propagation scores suggest a much greater likelihood
that testing will fail to detect existing faults, and thus by adding probes (assertions) into
the software before the software is tested, we get a much clearer picture as to whether faults
are present.

Examining propagation scores can aid a programmer in the placement of ASSERT state-
ments. The CBrowse utility that we have built as a part of this effort can read propagation
results and display them to the user. CBrowse is capable of loading multiple files, and has
been modified to help the user place assertion statements. RST has also created an Asser-
tion Placement Wizard that aids the user in stepping through propagation results loaded in
CBrowse. The Wizard asks the user to choose an upper bound for testability scores (the
threshold). It then allows the user to move between statements that have scores below this
threshold by clicking on either the Next or Previous buttons (See Figure 5). The Wizard
displays the score for the current statement, and the assertion (if one exists). When all
of the relevant scores in the current file have been visited, the tool will automatically load
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another file from the program and locate the first testability score that is within the specified
threshold. The Wizard provides an easy means of navigating through source-code.

1. 1.
= Source Browser EHE

Eile Search QOptions Instrumentation Analysis Mode Process Windows About

Source File: yaw.c Instr File: yaw.ins Analysis: Assertion Placement

197: (A
198: /* WOUT: LOCAL YARIABLE DECLARATIONS */
199

200 double il; ) T
201 double o3 = Assertion Placement Wizard (=

202¢ double 0_2; )
N3t tethod: Filter Threshold:|0.700
204 double normalize_fag
205

+ 205 normalize_factor =
207

208: Assertion: Edit
208; | —I
+ 210 printf{"il = ¥d DUDE
211

212; /% WOUT: STATEMENTS */ Next | Previous | Dismiss |
213 u i
+ 214¢ tau *= normalize_fag
215: L L

+ | 216: if ER) J

+ {
@ | 222: 0_2 = WOUT_STATE;
}

223:
+ | 224: o ({02 - I) * exp (({-dt) / taw))) + il);
+ | 225 b (I -0 / tau)s

+ | 226 # _STATE = o;
277}
228
220
2300 f

231t /% YAWDAMP / FOLAG

252 [

233: /* TITLE: First Order Lag

234y S

235: /% DESCRIPTION: This function is a sampled data representation of a
236: /% order filter,

237 f
238

Score:  [0.615385

Figure 5: Assert Wizard for Placement.

The Assertion Edit Window (AEW) can be used in conjunction with the Assertion Wizard
to simplify the placing of ASSERT statements. The AEW provides a GUI that allows the
user to place complex assertions with less effort (See Figure 6).

The user brings up the AEW utility by clicking on the Edit button of the Assertion
Placement Wizard. The AEW provides lists of symbols, expressions, and relevant variables
that allow the user to build ASSERT statements with minimal typing. When building an
assertion statement, the user can use any item in these lists by simply clicking on it. The
AEW also provides guidelines to help build syntactically correct statements. After building
the assertion statement, the user has the option of placing the ASSERT statement either
before or after the statement that is currently being examined. When the user inserts an
assertion statement it appears in the Assertions window.

24



I
=

Source Browser

1
[

Eile Search Options |nstrumentation Analysis Mode Process Windows

About

Source File: yaw.c

Instr File: yaw.ins

T
= Assertion Placement Wizard

187:
198

4 WOIT: | OCAl YARTARLF TIFCL A

Method: Filter

Thresheold: |0.700

=|

Assertion Edit Window

$Range (o0 2,0, 10)

Eefore
Assertion: [$Range (o_z 0, 10) e
& After
+
Symbols: Functions: Expressions:
MWGT Forall |
o AMD ThereExists 0z
CR Always
( fero
)| Equality
*
. String Compare
@ |
&
@
@ Edit | Insert Replace Delete |
+
+
Assertions:

aK |

Cancel |

6 Summary

Figure 6: A.E.W.
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When the user places an ASSERT statement using the AEW, it is not immediately placed
in the program’s source code. Assertions built in this manner are first stored in memory,
and then placed in the source code of a program when the user choses the FILE - SAVE
ASSERTIONS menu option. Once the user has placed his or her ASSERT statements into
the source code by choosing the FILE - SAVE ASSERTIONS menu option, the user must
re-instrument for testability (using RST’s testability tool) in order to attain valid testability

This SBIR Phase II effort provided NIST with a methodology and a tool for predicting where
faults will hide during testing and where assertions should be placed. Our deliverable tools




work for the C++ and Java languages. To our knowledge, these tools are the only of their
kind, and are based on nearly 10 years of basic research into why faults hide during testing.
The key US Government organizations that have funded this research are: National Institute
of Standards and Technology, NASA, National Science Foundation, and DARPA.

This methodology improves the testability for a fixed test suite. It is true that bigger
test suites could be used as an alternative way to boost testability while ignoring assertions
altogether. This issue has cost trade-offs that need further exploration to determine whether
smaller test suites with assertions are better at revealing faults than larger test suites without
assertions.

Generating additional test cases and embedding assertions are not the only verification
and validation tricks that could be employed once it is known where testing is unlikely to
be capable of detecting faults. Manual inspections or formal proofs that certain semantic
constraints are true could also be applied to ensure that defects are not hiding.

Our conclusion that assertions are beneficial to software testing parallels the comments
by Osterweil and Clarke concerning the value of assertions to testing; in their 1992 IFEFE
Software article, they classified assertions as “among the most significant ideas by testing and
analysis researchers” [3]. From our previous work studying why faults hide during testing, we
believe that we have provided insights into why assertions work well and how their placement
can be made more systematic and practical.

We conjectured that assertions that are based on deficits in some testing suite D may
still be valuable tools for improving the defect observability rates of another testing suite,
D'. If generally true, this suggests that current research into which testing approach is
better may be wasted effort, i.e., possibly any testing technique can be massaged into an
excellent fault detector after assertions are instrumented to test untestable regions. Most
research in software testing is geared toward finding some method K that will produce a
test suite D for which T(P)p ~ 1.0. This suggests that when high fault detection is the
goal, instead of looking for the ultimate K, derive assertions and generate additional tests,
A, such that T'(Pa,)(p u a) & 1.0. In summary, assertions and additional test cases (that
ensure reachability) can transform your code from being untestable to testable. Let them.
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